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1 Introduction
Let S be the set of possible outcomes of some data collection process, T = {1, . . . , k}
the set of labels and π a probability distribution on S × T . The prototypical
problem in classification is to find a function

f : S → T

such that, given a loss function L : T × T → [0,∞), the expected loss

L(X,Y ) := E[L(f(X), Y )]

is minimized for (X,Y ) ∼ π. In practice, to estimate the expected loss, a dataset

D = {(xi, yi)}ni=1 ⊂ S × T

is sampled from the distribution π. As a surrogate for the expected loss L(X,Y ),
the aim is then to minimize the empirical loss

L̂(D) := 1
n

n∑
i=1
L(f(xi), yi)

Solving this problem usually requires giving the outcome space S and the data D
some structure by embedding them in an ambient metric or Euclidean space. One
can then use a model, such as a support vector machine (SVM) or artificial neural
networks, and finally apply an optimization algorithm to find the minimum.

In this project, we are interested in the case when S is the space of one- or
two-dimensional histograms of probability distributions. This corresponds to the
problem of matching signals or images to their labels. For example, the MNIST
dataset [LC10] contains images of handwritten digits and corresponding ground
truth labels {0, . . . , 9} and has become the standard in the machine learning
literature to benchmark the performance of newly proposed supervised learning
algorithms.
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We will focus on the problem of equipping the space of histograms with
a suitable metric. In particular, we will first equip the space of histograms
with a Wasserstein metric. Computing the Wasserstein metric turns out to
be computationally infeasible; however, a type of regularization will yield the
so-called (dual) Sinkhorn metric which is a solution to a convex optimization
problem and is computable with linear complexity. Finally, we will compute the
solution of the regularized problem by the Sinkhorn-Knopp algorithm.

The optimal transport approach has been a successful and innovative method
in various other machine learning tasks, e.g. domain adaptation [Cou+17], nat-
ural language processing [Kus+15] and dimensionality reduction [Tol+18].

2 Optimal transport and Wasserstein distances
We will follow closely the exposition in [Cut13]. For simplicity, we only con-
sider one-dimensional probability histograms of length d. For more details on
computational optimal transport, see [PC19].

Definition 1 (Probability simplex and transport plans). Denote the probability
simplex in Rd as

Σd := {x ∈ Rd+ : xT 1d = 1}

and define the space of transportation plans between r ∈ Σd and c ∈ Σd as

U(r, c) := {P ∈ Rd×d+ : P1d = r, P T 1d = c}

for histograms r, c ∈ Σd.

Remark 2. Note that U(r, c) is simply the set of stochastic matrices with
marginals r and c. For any transportation plan P ∈ U(r, c), each entry Pij
can be interpreted as the proportion of ri to be transported to the location of
cj .

Definition 3 (Optimal transport problem). Given probability distributions
r, c ∈ Σd and a matrix M ∈ Rd×d+ , the optimal transport problem is

dM (r, c) := min
P∈U(r,c)

〈P,M〉 := min
P∈U(r,c)

d∑
i,j=1

PijMij (1)

Remark 4. Note that the expression to be minimized over is linear in P and we
are minimizing under the implicit (linear) constraints P1d = r, P T 1d = c. Such
an optimization problem is known as a linear program.

Remark 5. M is commonly referred to as the cost matrix. Each entry Mij

should be interpreted as the cost per unit of transporting from site ri to site
cj . A cost matrix may arise from pairwise distances of points in a metric space
(e.g. a data set randomly sampled from a metric space) or it may be a fixed
object, as in the case for image pixel intensities that we consider in Section 6,
where the cost matrix consists of the fixed pairwise pixel distances.
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Definition 6 (Metric matrices). M ∈ Rd×d is a metric matrix if it is symmetric,
∀i 6 d : Mii = 0 and ∀i, j, k 6 d : Mij 6Mik +Mkj .

Theorem 7. If M is a metric matrix then the function dM : Σd × Σd → R
defined in (1) is a metric on Σd.

Definition 8 (1-Wasserstein distance on Σd). Let M ∈ Rd×d+ be a metric cost
matrix. The metric dM on Σd as defined by (1) is called the 1-Wasserstein
distance and is also commonly referred to as the earth mover’s distance
(EMD).

Remark 9. In the case where Σd arises from uniformly spaced histograms (e.
g. pixel intensities), the cost matrix will stay fixed with respect to sampling and
will correspond to pixel distances in the context of image processing.

The worst case computational cost of computing the minimum in the linear
program (1) is known to be O(d3 log d) which is prohibitive for large scale appli-
cations. However, recent developments in computational optimal transport have
reduced the computational complexity of optimal transport distances to O(d)
by regularization, thus bringing optimal transport back to relevance in machine
learning. This is the content of the next section.

3 Basic information theory
Let us recall some definitions from information theory. For more details, see
Chapter 2 of Cover and Thomas [CT06].

Definition 10 (Entropy). For a histogram r ∈ Σd define the entropy as

h(r) := −
d∑
i=1

ri log ri

Similarly, for a transportation plan P ∈ U(r, c) define the entropy as

h(P ) := −
d∑

i,j=1
Pij logPij

Definition 11 (Divergence). A function D(· ‖ ·) : Σd × Σd → R∗ is said to be
a divergence if

∀p, q ∈ Σd : D(p ‖ q) > 0
∀p, q ∈ Σd : D(p ‖ q) = 0 ⇐⇒ p = q

Definition 12 (Kullback-Leibler divergence). For p, q ∈ Σd define the Kullback-
Leibler divergence as

KL(p ‖ q) =
{∑

i pi log pi
qi

p, q equivalent
+∞ otherwise
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Similarly, for P,Q ∈ U(r, c) define

KL(P ‖ Q) :=


∑
i,j Pij log Pij

Qij
P,Q equivalent

+∞ otherwise

Remark 13. In general, a divergence is not necessarily a metric.

4 Entropic regularization and Sinkhorn distances
In the following, assume that M is a metric matrix. Cuturi [Cut13] suggested
regularization of the linear program (1) by restricting the feasible set U(r, c) by
an upper bound on the KL divergence from the so-called independence table
rcT ∈ U(r, c).

Definition 14 (Sinkhorn distance). For any α > 0 define

Uα(r, c) := {P ∈ U(r, c) : KL(P ‖ rcT ) 6 α} ⊂ Σd×d

The Sinkhorn distance is then defined as dM,α : Σd × Σd → R,

dM,α(r, c) := min
P∈Uα(r,c)

〈P,M〉 := min
P∈Uα(r,c)

∑
i,j

PijMij (2)

Remark 15. In the above form, the Sinkhorn distance does not strictly satisfy
the positive definiteness axiom. This can be remedied by considering 1i 6=jdM,α

instead. The fact that 1i 6=jdM,α is a metric is not difficult to show, but is omitted
here for brevity and its proof can be found in [Cut13].

Note that the problem (2) contains a hard constraint in the form of the
feasible domain Uα(r, c). As we have seen in the course, the dual problem is
usually more amenable to analysis in such cases.

Definition 16 (Dual Sinkhorn divergence). For any λ > 0, define

P λ = arg min
P∈U(r,c)

∑
i,j

PijMij −
1
λ
h(P ) (3)

and define the dual Sinkhorn divergence as

dλM (r, c) := 〈P λ,M〉

Remark 17. The goal of Exercise 17 is to show that P λ realizes the value of the
dual function fd(0, 1

λ) corresponding to problem (2) for λ > 0. Then by strong
duality, for every α > 0 there exists λ > 0 such that

dM,α(r, c) = dλM (r, c)

Nonetheless, the aim in Cuturi [Cut13] is not to find the λ corresponding to
a given α, but rather to use λ as the tuning parameter for the strictly convex
problem (3) instead of the hard constraint α, and work with dλM instead of dM,α

even though it can only be shown to be a divergence.
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Remark 18. By strict convexity of −h(P ) (see Exercise 3), the problem (3) is
convex. Moreover, the particular structure of the problem allows for efficient,
parallelized algorithms such as that of Sinkhorn and Knopp [KS67], which was
also exploited by Cuturi [Cut13]. As a consequence, one can compute all pair-
wise dual Sinkhorn distances between N histograms of length d in complexity
O(d2N2).

Remark 19. There exists now the easy-to-use Python Optimal Transport pack-
age [FC17] which contains functions for computation of both Wasserstein dis-
tances and Sinkhorn divergences.
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5 Marked problems

5.1 Optimal transport

Exercise 1. Let (X, d) be a metric space, let D = {xi}Ni=1 be a dataset in X and
define the cost matrix (Mij)Ni,j=1 as Mij = d(xi, xj). Show that M is a metric
matrix.

Exercise 2. Let r = (1
2

1
2), c = (1

3
2
3) be two histograms and M =

(
0 1
1 0

)
.

Find the optimal transport plan P for the optimal transport problem as per
Definition 3.

5.2 Information theory

Exercise 3. Show from the definition that the entropy h : Σd → R is non-
negative. Looking at the function h on the open set {x ∈ Rd+ : x > 0}, where it
is well-defined, compute the Hessian matrix and conclude that h is concave, by
referring to a result from Extra Problem Sheet 1. What about strict concavity?

Exercise 4. Show that for any two histograms r, c ∈ Σd, we have rcT ∈ U(r, c)
and

h(rcT ) = h(r) + h(c)

Exercise 5. State what it means for two histograms p and q to be equivalent.
Using that y 7→ log(y) is strictly concave, show that KL(p ‖ q) as defined in
Definition 12 is a divergence as per Definition 11.
Hint: Work with y 7→ − log(y), noting that log pi

qi
= − log qi

pi

Exercise 6. Is the KL divergence a metric? Prove or disprove.

Exercise 7. Show that KL(p ‖ q) as defined in Definition 12 is convex in the
pair (p, q), that is ∀(p, q), (p′, q′) ∈ Σd × Σd,∀λ ∈ [0, 1] :

KL(λp+ (1− λ)p′ ‖ λq + (1− λ)q′) 6 λKL(p ‖ q) + (1− λ) KL(p′ ‖ q′)

Hint: Write for every i 6 d:

λpi + (1− λ)p′i
λqi + (1− λ)q′i

= λ̃
pi
qi

+ (1− λ̃)p
′
i

q′i

with
λ̃ := λqi

λqi + (1− λ)q′i
, 1− λ̃ = (1− λ)q′i

λqi + (1− λ)q′i
Exercise 8. Let u = 1

d1d = 1
d(1 . . . 1) ∈ Rd be the histogram of a uniform

distribution. Show that

KL(p ‖ u) = log d− h(p)

By convexity of KL(p ‖ q), conclude again that the entropy h : Σd → R is
concave.
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For Exercises 9-13, we consider the following setting. Let f : Rd → R∗
be a convex function that is strictly convex differentiable on its domain. For
any x ∈ dom(f), let Hx be the supporting hyperplane of epi(f) supported at
(x, f(x)), i.e.

Hx = {(y, hx(y)) : y ∈ Rn}

for an affine function hx : Rd → R with hx(x) = f(x) on dom(f).
Given a reference point x0 ∈ Rd and any other point x ∈ Rd, define the

f -divergence from x to x0 as

Df (x0 ‖ x) := f(x0)− hx(x0).

For Exercises 9-12, you may assume dom(f) = Rd.

Exercise 9. Illustrate an example of epi(f) and Hx in a 2D drawing. Explain
why the function hx is uniquely determined and express hx(x0) in terms of∇f(x).

Exercise 10. By comparing f(x0) and hx(x0), argue that Df (x0 ‖ x) is a
divergence in the sense of Definition 11. Illustrate this in the previous drawing.

Exercise 11. Show that

Df (x0‖x) = f (x0) + f∗ (x∗)− x∗ · x0

where x∗ := ∇f(x) and f∗ is the Legendre transform of f .

Exercise 12. Using the result of the previous exercise, show that the f -divergence
from x0 to x can be written in the ‘dual’ form

Df (x ‖ x0) = Df∗(x∗0 ‖ x∗)

for the ‘dual’ variables x∗ := ∇f(x) and x∗0 := ∇f(x0).

Exercise 13. First, compute the Legendre transform of the negative entropy
−h : Σd → R. Then confirm that it satisfies the relation from Exercise 12, and
show that

∀p, q ∈ Σd : D−h(p ‖ q) = KL(p ‖ q)

5.3 Entropic regularization

Exercise 14. Using the definitions, prove that

KL(P ‖ rcT ) = h(r) + h(c)− h(P )

Show that, as a consequence, we can equivalently write

Uα(r, c) = {P ∈ U(r, c) : h(P ) > h(r) + h(c)− α}

and deduce that Uα(r, c) is convex as a subset of Σd×d, where Uα(r, c) is defined
in Definition 14.
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Exercise 15. For arbitrary r, c ∈ Σd, what is the Sinkhorn distance dM,α(r, c)
when α = 0? What is the Sinkhorn distance for α large?

Exercise 16. Argue by Slater’s condition that the problem (2) is strictly feasible
and hence strong duality holds.

Exercise 17. Define the primal function corresponding to the convex optimiza-
tion problem (2) as

f(P, β) =
{
〈P,M〉 if − h(P ) 6 −h(r)− h(c) + α− β
+∞ otherwise

Show that the dual function (with µ = 0) is

fd(0, λ) =
{

infP∈U(r,c)−λh(P ) + λ(h(r) + h(c) + α) + f(P, 0) if λ > 0
−∞ otherwise

Conclude that P λ as defined in Definition 16 is the transfer plan that realizes
the value fd(0, 1

λ).

6 Computational component
In this section, we will consider a toy dataset of 1797 handwritten digits of size
8 × 8. The goal is simply to play a bit around with the EMD and Sinkhorn
distances, so it is by no means the intention that this particular example is
better solved with one of these distances. Indeed, we would need to consider
more complex problems for these distances to become relevant.

For exercises 18-25, you may wish to download template code from
https://github.com/benediktpetko/convex-optimization-project.

The aforementioned dataset is loaded by the script via scikit-learn. For
plotting, we recommend using the matplotlib.pyplot plotting library.

Exercise 18. Reshaping the data suitably, plot the images of the first three
hand-written digits.

Exercise 19. The images are 8 × 8 matrices of pixel intensities, (where we
assume that the pixels exist on a uniformly spaced grid in the plane). What
should a sensible cost matrix look like in terms of size and zero entries? Plot the
cost matrix provided in the template script, and explain how it is constructed.

Exercise 20. Using the Python Optimal Transport package, compute the earth
mover’s distance between the first two images (for the template cost matrix).
Report also the computational time.

Exercise 21. Using Python Optimal Transport, compute the dual Sinkhorn
divergence between the first two images (for the template cost matrix). Note
that you will need to pre-process the data to avoid error due to division by
zero (hint: substitute zeroes for, say, 1e-17). Using only 3 iterations in the
Sinkhorn algorithm (or something similarly small), do some trial and error to
find a regularisation parameter reg ∈ (0, 1] such that the distance is essentially
the same as for EMD but at half the computational time (or less).
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Exercise 22. Allowing yourself a large number of iterations (say, 1000), so that
the algorithm should be close to the true Sinkhorn distance, report on what
happens as you make reg ∈ (0, 1] smaller and smaller. Can you relate this to the
definition of the Sinkhorn distance in Section 4. (It is enough to work with the
distance between the first two images in the dataset).

Exercise 23. Using scikit-learn, we split the data into a training set and a
test set, assigning 10% of the data to the test set (this is already done in the
template). With help of scikit-learn, apply the k-nearest neighbour algorithm (k-
NN) to classify the test set. Report accuracy of the predicted labels against true
labels, using the Euclidean metric for pairwise distances in the k-NN algorithm.
You may use the default value of k = 5.

We will use the resulting accuracy as a benchmark for the following parts.

Exercise 24. Repeat Exercise 23, this time with EMD as the input metric
for the k-NN algorithm, again reporting accuracy. Computational time aside,
can you obtain sufficient accuracy for the EMD distance to be sensible for this
classification task?

Exercise 25. Repeat Exercise 23, this time with the dual Sinkhorn divergence
as the input “metric” for the k-NN algorithm, again reporting accuracy. Why
is “metric” now in quotation marks? Using only 3 iterations (or similar) for the
algorithm, show by trial and error (i.e., by finding a suitable reg ∈ (0, 1]) that
the algorithm can be at least two times faster than the EMD from Exercise 24
with at least the same level of accuracy.
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