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Abstract

In this paper we will demonstrate the use of optimization methods as a
means of achieving image super-resolution. Using multiple low-resolution
frames, we will attempt to retrieve subpixel information from a simulated
high-resolution signal.

First, we consider a suitable method of detecting frames’ mutual shift
in terms of precision and robustness to noise. Secondly, we reconstruct
the signal by the least squares method and its L1 and TV regularized
versions. These optimization procedures are compared with respect to
their quality of reconstruction in terms of signal content and resolution.
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1 Introduction

1.1 What is super-resolution

Super-resolved image is a high resolution (HR) image obtained from one or mul-
tiple low resolution (LR) images. This can be understood as recovering subpixel
information contained in a picture from multiple shifted frames. Currently, the
most commonly used methods in the image processing community are pixel in-
terpolation, statistical methods and optimization.

Specifically, we would like to circumvent the measuring apparatus’ limitation
which is the size of a pixel. In order to achieve this, we consider a collection
of images mutually shifted by a fraction of a pixel. It is assumed that the real
image to be reconstructed does not change during the measurement. The shifts
are generally random and need to be found before proceeding with an image
reconstruction. The process of calculating the shifts is called signal registration.

The real image is continuous. However, depending on the level of detail in the
image to be resolved, it is sufficient to have an image of certain degree of fine-
ness. Thus, the image can be approximated as a uniformly spaced, finite grid of
colour intensity values. Equivalently, the grid can be represented by a matrix.
For an imaging device consisting of an equally spaced array of sensors, the res-
olution is inversely proportional to the size of a sensor. Using a commercial
digital camera, the resolution of one frame is generally multiple times smaller
than the required resolution to register a given level of detail. The ratio between
LR and HR grid increments is called the super-resolution factor (SRF). A par-
ticular model of image acquisition and processing is introduced in the following
section.

1.2 Research questions

• What methods to use for signal registration? How do they work in the
presence of noise?

• Is there any gain in resolution if we use a more constrained optimization
problem?

• What is the relationship among superresolution factor, number of frames,
level of noise, quality and bandwidth (i.e. how close can two signals be
and still be registered as distinct)?

2 Camera sensing model

Suppose we want to reconstruct a one dimensional, band-limited continuous
signal u(t). By the Nyquist-Shannon sampling theorem, if the spatial frequencies
present in u(t) are supported on [−B,B], it is sufficient to sample every T = 1

2B
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or less metres. Therefore, it is sufficient to reconstruct u[n] := u(nT ) to underpin
all frequencies in the sample.
Let u[n] be the discretized image of desired resolution. However, before the
image reaches the user, it is distorted by various effects [1] [2]:

• Movement (translation and rotation)
This effect can be reversed by precise signal registration and is dealt with
in the next part. In one dimension, we only take account of translation:

u[n− αk]→ u[n]

• Diffraction in the atmosphere, lens and addition of random electric noise
This can be modeled as

u[n]→ x[n] =
∑
m

u[m]h[n−m] + σn

where h denotes a blurring kernel and σn is assumed to be additive white
Gaussian noise (AWGN).

• Downsampling
The high resolution (HR) image x[n] is downsampled to low resolution
(LR) image y[n] due to the sensing apparatus’ pixel size, which is generally
larger than the details to be captured, so that:

x[n] (HR) → y[n] (LR)

The ratio between the width of a pixel and T is assumed to be an integer value
and is called the superresolution factor (SRF). The blur caused by atmospheric
turbulence and diffraction in the lens can be modeled by convolution of the
signal with a blurring filter and can be remedied by deconvolution methods.
However, in this work we will only focus on reversing the effects of movement,
random noise and downsampling.

We will attempt to restore x[n] from multiple measurements (frames) y(k)[n]
where k ∈ I, a finite index set. y(k) represents an output of the camera or other
imaging device. We identify the finitely supported discrete functions x[n], y(k)[n]
with vectors x,y(k) respectively. To take into account the width of a pixel, each
entry of y(k) is an average of several neighboring entries of x.

3 Computing frames relative shift

3.1 Modeling shifted frames

It is convenient to work with the circulant matrix when modeling the sampling
process. Suppose u ∈ RN is the noiseless, high-resolution image. We would like
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Figure 1: Two shifted frames of a test signal

to reconstruct its noisy, high-resolution representation x ∈ RN as precisely as
possible.

Suppose C = 1
n

1 . . . 1 0 . . . 0
0 1 . . . 1 . . . 0
...

. . .

 is a N ×N circulant matrix of the

above form, i.e. with c = 1
n (1 . . . 1 0 . . . 0) as the first row of C. Let n be the

width of a pixel (SRF) and suppose n|N and c has n 1’s. Then we can represent
a measurement (a frame) by y(k) = R(k)Cu where

R
(k)
ij =

{
1 if j = n(i− 1) + αk

0 otherwise

with k = 1 → m, αk are integers in a specified interval and m is the number
of frames. R simply takes out every nth entry of Cu. In practice, taking m
number of frames, we will have data {y(k), αk|k ∈ {1, . . . ,m}}.
Define y

(k)
u the frame upscaled to the high-resolution grid so that x and y

(k)
u

are of the same length and y
(k)
u consists of blocks of SRF-times repeated values.

3.2 Detecting shifts (signal registration)

Before reconstructing the image, it is essential to reverse the motion of the
frames which occured during their acquisition.

Suppose we have two frames y(1)[n], y(2)[n] mutually shifted by n0 and their dis-
crete Fourier transforms Y (1)[ω], Y (2)[ω]. Here n and n0 represent increments
on the high-resolution grid and we assume that the domain has N points, i.e.
|D| = N . Then y(1)[n − n0] = y(2)[n], assuming the high-resolution image did
not change between these two measurements. In practice, due to noise we only
have y(1)[n − n0] ≈ y(2)[n], therefore there might not be an exact solution for
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an integer n0.

There are two prominent algorithms in the literature that compute the mutual
shift n0 [1].

3.2.1 Spatial method

Although y(1)[n − n0] ≈ y(2)[n] only approximately, we can always find the
closest integer n0 by solving the problem

min
n0

∑
n∈D
|y(1)[n− n0]− y(2)[n]|2.

Disregarding the presence of noise, this can be solved by taking the maximum
of the lagged autocorrelation function:

R[τ ] =
∑
n∈D

y(1)[n− τ ]y(2)[n]

At the maximum τ = n0, R[n0] is simply the energy of y(1)[n] and y(2)[n].

3.2.2 Frequency method

By a well-known identity of the Fourier transforms:

DFT{y(1)[n− n0]} = e−2πn0
ω
N Y (1)[ω]

Then y(1)[n− n0] ≈ y(2)[n] implies that

e−2πn0
ω
N Y (1)[ω] ≈ Y (2)

Thus we can find an approximate integer solution for n0 by solving

min
n0

∑
ω∈B
|e−i2π ω

N n0Y (1)[ω]− Y (2)[ω]|2

for some bandwidth B which is tricky to choose. The bandwidth is chosen less
than the Nyquist rate because of the overlaps of periodic continuation of the
FT of the image in the frequency domain. It seems like the frequency approach
will be hard to implement if FT has fat tails/high frequencies (it will be hard
to establish the true period/bandwidth).

3.2.3 Robustness of shift detection against noise

As a test image, we used two peaks of width 0.2 each on the domain [−1, 2] and
tested whether the computed shift corresponded to the true shift.

There seems to be an offset of the error from noise level around σ = 0.4.

The following graph shows errors where the whole spectrum was considered.
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This shows significantly higher robustness of the frequency method against
noise. The reason is that the Fourier spectrum of Gaussian noise is constant.

4 Image reconstruction methods

We have several approaches to exploiting multiple measurements. In the follow-
ing discussion, assume we are given a set of frames {y(k)|k ∈ I ⊂ {1, . . . ,m}}
with y(k) aligned and upscaled (converted to the fine scale).

4.1 Averaging

The very simplest method to obtain a reconstruction is to take the average of
the frames aligned accordingly:

x =
∑
k

y(k)

This averages out the noise while still retaining some of the resolution by off-
setting the frames. However, the averaging acts much like a smoothing filter
applied to the high-resolution test signal. For example, from Fig. 2 we see that
the reconstruction did little to preserve edges originally present in the test signal.

The following proposed methods are optimization-based, i.e. the reconstruc-
tion is a solution to an optimization problem.

4.2 Least squares

We can distinguish two least squares methods with two distinct objective func-
tions, differing in the position of the sum over the measurements.

4.2.1 Inner sum objective

In this case, the objective function is the norm of the sum of the difference
between the modeled and observed frame. Given the data {y(k)|k ∈ I ⊂
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Figure 2: A typical reconstruction of image by averaging frames

{1, . . . ,m}}, solve the problem

min
x
‖
∑
k

A(k)x− y(k)‖2L2 .

4.2.2 Outer sum objective

An alternative problem is

min
x

∑
k

‖A(k)x− y(k)‖2L2 .

In both cases the problem arises that some of A(k) or
∑
k A

(k) might be
ill-conditioned and so x will have infinitely many solutions. Python picks the
shortest one. The ill-posedness is dealt with by dropping some of the small
eigenvalue components. However, dropping the small eigenvalues means disre-
garding high frequency components of the image.

A way to deal with the ill-posedness of the least squares problem is to intro-
duce a regularization term. According to literature, TV and L1 regularization
work well for preserving resolution. The reason is that real world images are
sparse, which means that there are few discontinuities and pixels are clustered
in monochromatic patches.

4.3 L1 regularized problem

We considered three types of optimization problems with various regularization
terms, listed in order of computational complexity.
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A(k)x = R(k)Cx represents the shifted, down-sampled real image. Assume we
are given the data {y(k)|k ∈ I ⊂ {1, . . . ,m}}.

4.3.1 Inner sum single constraint

Solve the regularized problem for some λ:

min ‖x‖1 + λ‖
∑
k

A(k)x− y(k)‖22

It turns out that this is equivalent to solving the problem with a single inequality
constraint for some ε [4]:

min ‖x‖1 subject to ‖
∑
k

A(k)x− y(k)‖22 ≤ ε2

4.3.2 Outer sum single constraint

Solve the regularized problem for some λ:

min ‖x‖1 + λ
∑
k

‖A(k)x− y(k)‖22

This is equivalent to the problem with a single inequality constraint:

min ‖x‖1 subject to
∑
k

‖A(k)x− y(k)‖2L2 ≤ ε2

4.3.3 Multiple constraints

Solve the regularized problem for some set of λk:

min ‖x‖1 +
∑
k

λk‖A(k)x− y(k)‖22

This is equivalent to the problem with multiple inequality constraints for some
ε:

min ‖x‖1 subject to ‖A(k)u− y(k)‖22 ≤ ε2k for k ∈ I.

4.4 Total variation regularized problem

For a discrete signal x, the total variation (TV) is defined as ‖x‖TV := ‖Dx‖1
where

D =


1 −1 0 . . . 0
0 1 −1
...

. . .

−1 0 . . . 0 1


is the discrete derivative operator.

As in the case of the L1 regularized problem, we have three ways to re-
construct the original image, using various regularization terms or equivalently
different constraints.
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4.4.1 Inner sum single constraint

Solve the regularized problem for some λ:

min ‖x‖TV + λ‖
∑
k

A(k)x− y(k)‖22

This is equivalent to

min ‖x‖TV subject to ‖
∑
k

A(k)x− y(k)‖22 ≤ ε2

.

4.4.2 Outer sum single constraint

Solve the regularized problem for some λ:

min ‖x‖TV + λ
∑
k

‖A(k)x− y(k)‖22

This is equivalent to

min ‖x‖TV subject to
∑
k

‖A(k)x− y(k)‖22 ≤ ε2

.

4.4.3 Multiple constraints

Solve the regularized problem for some set of λk:

min ‖x‖TV +
∑
k

λk‖A(k)x− y(k)‖22

This is equivalent to

min ‖x‖TV subject to ‖A(k)x− y(k)‖22 ≤ ε2k for k ∈ I.

Remark: In total, we thus have 2 different least squares problems and 6 differ-
ent regularized least squares problems, which can be solved to yield an image
reconstruction. All of the above are convex optimization problems since every
norm is a convex function.
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Figure 3: Step-like (left) and spike (right) test signals

5 Results

Software Python 3.6 and 2.7 and the open source package CVXOPT [3] for con-
vex optimization tasks were used to simulate the proposed signal reconstruction
methods. The following simulation parameters were used for all experiments un-
less otherwise specified. The domain consisted of 256 uniformly spaced points,
SRF was set to 16 and the number of frames was set to 36. The test signal
were either two step-like peaks or two spikes of height 1 centered at 0 and 1,
each of width 0.2. The Gaussian noise was randomly generated with mean 0
and standard deviation 0.3.

As we will show graphically, reconstructions share similar features regardless
of the constraint type chosen, although they might differ in bandwidth and
artifacts.

5.1 Resolution

A user can perceive the quality of an image in two ways: the signal content
in the reconstruction, and the ability to distinguish fine features, for instance
discerning two sources of light being close together.

5.1.1 Signal content

The quality of an image depends on the amount of noise and artifacts. Define
the signal-to-noise ratio SNR := maximum of the signal

maximum of the noise . Define the quality of
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reconstructed image x in terms of the original image u as

Q := 1− ‖x− u‖22
‖x‖22

.

Q measures what proportion of the reconstructed image is the true signal in
terms of the L2 norm: if Q = 1, we have a pure signal, if Q ≈ 0, most of the
image is noise.
Alternatively,

Q := 1− ‖x− u‖1
‖x‖1

.

5.1.2 Resolution

The main point of multi-frame image restoration is to retrieve subpixel infor-
mation, that is to reconstruct the high-resolution grid. We define the resolution
of a reconstruction of the given test signal as

α = 1− (the lowest value between the two test peaks).

α is the factor of confidence that the two test peaks were resolved and it holds
that 0 ≤ α ≤ 1. Thus, α = 0 means the two peaks were not resolved at all,
whereas α = 1 means they were completely resolved.

5.2 Least squares reconstructions

The least squares reconstructions were computed using the numpy.linalg.lstsq()
function. Running simulations shows that the outer and inner sum objectives
yield qualitatively very similar reconstructions.

Fig 5 shows a comparison of the both least squares methods with 256 points,
SRF set to 16 and 50 frames with respect to the L2-based quality factor. This
shows that the level of artifacts is similar for both inner and outer sum objective
functions. Moreover, the signal content in the reconstruction diminishes even for
low noise levels. Therefore, we can conclude that least squares methods are not
robust to noise. This can be explained by the ill-posedness of the least squares
problem as mentioned previously. A small distortion of the measurement by
noise leads to a substantially different least squares output.

5.3 L1 and TV reconstructions

The ill-posedness of the least squares problem motivates the use of regulariza-
tion terms. As a result, these methods turn out to be very robust to noise.

The L1 and TV regularized problems described in the previous section can
be converted into a second-order cone program (SOCP). See Appendix A for
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Figure 4: A typical least squares reconstruction (blue) with noise level σ = 0.05

Figure 5: Comparison of the two least squares versions in terms of signal content
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Figure 6: Comparison: Typical reconstruction (blue) using L1 (left) and TV
(right) regularization with a test signal (orange)

a more detailed discussion. A SOCP can be solved using CVXOPT’s cvx-
opt.solvers.socp() function. Fig. 6 shows general appearance of these recon-
structions.

5.3.1 L1 reconstruction

L1 regularization is particularly suitable for preserving slopes, spikes and im-
pulses, but tends to disrupt monochromatic patches (see Fig. 6). The socp()
function’s input were

G0 =

(
I −I
−I −I

)
, h0 =

5.3.2 TV reconstruction

Total variation regularization works well for preserving edges and monochro-
matic patches. Fig. 7 shows how the value of α (factor of resolution) changes
depending on values of noise and the gap between the test peaks.

The collected data shows that in presence of little or no noise, multiple
constraints allow to reconstruct an image with higher resolution (see example
in Fig. 8). Moreover, outer sum constraint yields better resolution for all tested

14



Figure 7: α values with varying noise and bandwidth of the test signal

Figure 8: Inner sum single constraint (left) and many constraints (right) meth-
ods
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values of noise and bandwidth. Therefore we can conclude that the use of a
stricter constraint is justified.

6 Further steps

We modeled the degrading process as a noisy Gaussian channel. By Shannon’s
Third Fundamental Theorem (Noisy Channel Coding Theorem), there might
be an upper limit on how much resolution (information) can be obtained given
the level of noise. In other words, the atmosphere and the apparatus are a
noisy channel which transmit the image, therefore we can never reconstruct
it perfectly. We will further inquire what the information-theoretical bounds
might be.

Moreover, we only dealt with 1D signals. For a practical application, it is
necessary to develop a procedure to reconstruct higher dimensional images. In
more than one dimension, rotation of frames should be taken account of besides
translation. Also with increasing dimensions and samples the computational
power becomes an issue, so the algorithm and code ought to be optimized if
possible.

7 Conclusion

Some prior knowledge of the characteristics of the signal helps when choosing a
suitable reconstruction method. For a high bandwidth signal with little noise, we
recommend using TV or L1 reconstruction with multiple constraints. However,
if significant amount of noise is present, it is advisable to use one of the single
constraint programs. Moreover, for a signal with edges to be resolved and
monochromatic areas, total variation methods yield results with lower level of
artifacts than L1 methods. On the other hand, if the signal contains slopes and
spikes, L1 reconstruction performs better in preserving such features.

A L1 and TV regularized least square problems
are SOCP

In the L1 case, the objective function ‖x‖1 can be substituted with the objective

function 1T
(
x
v

)
and the constraint −v � x � v, optimizing with respect to

x, v where v is an arbitrary vector of the same length as x. In matrix form, this
is then the problem

min
x,v

1T
(
x
v

)
subject to

(
I −I
−I −I

)(
x
v

)
� 0

and corresponding inequality conditions of choice on the frames (inner or outer
sum constraint or multiple constraints).
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Similarly, we can convert the TV objective to

min
v,x

1T
(
x
v

)
subject to

(
D −I
−D −I

)(
x
v

)
� 0

B SOCP solver

The following inputs for cvxopt.solvers.socp() can be used to replicate the ex-
periments in this paper. The function takes as the input a vector c, which
defines the objective function for the SOCP, and matrices G0, h0 and Gi, hi for
i = 1 → m, which represent various inequality constraints. Their exact func-
tioning in the algorithm is described in detail in CVXOPT’s documentation
[7].

B.1 Objective function

Always set c = 1 (a vector of ones of dimension 2N). This imposes the objective
function:

min1T
(
x
v

)
.

Set h0 = 0 (a zero vector of dimension 2N).
For an L1 regularized problem, set

G0 =

(
I −I
−I −I

)
.

This imposes the inequality constraint

−v � x � v.

For a TV regularized problem, set

G0 =

(
D −I
−D −I

)
which imposes the inequality constraint

−v � Dx � v.

B.2 Constraints

To introduce the inner sum constraint
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