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Abstract

We offer a brief summary of existent notions of curvature in non-
smooth spaces. We then focus on Ollivier’s Ricci curvature and major
existent results related to it. Finally, we outline possible problems to
be addressed in our future research.
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1 Introduction
Curvature in the setting of Riemannian geometry is an extensively studied
subject and its developments have been summarized, for instance, in the
books [Ber02] [Jos17].

One of the first studies of curvature in non-smooth spaces was carried
out by Alexandrov towards the end of 1940’s. Alexandrov’s generalization
to non-smooth spaces relied on the observation that triangles in spaces of
positive sectional curvature have larger sum of internal angles than triangles
of the same side lengths in plane. The advances in Alexandrov curvature
have been summarized for example in the survey [BGP92] and the book
[BBI01].

In 2003, J. Lott and C. Villani initiated their work on Ricci curvature by
displacement convexity. Lott and Villani’s notion of curvature was based on
convexity of certain functionals of probability measures in the 2-Wasserstein
space on a general metric space equipped with a measure. This was again
independent of any smooth structure on the base space considered. The
outcome of their research was the work [LV09]. The approach of Lott-Villani
has moreover been surveyed in [Lot06] and more recently in [Vil16]. The
underlying theory of optimal transport has been summarized in Villani’s
books [Vil03] [Vil08]. Independently, curvature by optimal transport was
around the same time also studied by Sturm and von Renesse in their work
[RS05].

Following the emergence of what is now referred to as Lott-Sturm-Villani
theory, an alternative notion was introduced by Y. Ollivier in 2007 and
published in 2009 in the article [Oll09]. In Ollivier’s theory, the metric
space (X , d) is equipped with a discrete time Markov transition kernel m =
(mx)x∈X and curvature between any two points x, y ∈ X is defined as

κ(x, y) := 1− W1(mx,my)
d(x, y)

which can be construed as the negative discrete gradient in the 1-Wasserstein
space along the evolution of the random walk. This definition is motivated
by the general observation that two close points on a Rimennian manifold
near a point of positive Ricci curvature move closer to each other when
transported along parallel geodesics and drift apart near a point of negative
Ricci curvature. This is then translated to the statement that two balls
of uniform measure on a Riemannian manifold are closer to each other in
Wasserstein distance than their centres (in the sense of geodesic distance)
at points of positive Ricci curvature and further apart at points of negative
Ricci curvature.

Ollivier’s curvature was further studied in [OV12] [JO10] [Pau16] [JL14]
and the preprint [Oll10b] offers a visual, intuitive introduction to the subject.
Moreover, advances in the computability of optimal transport (e.g. [Cut13]
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[PC19]) recently lead to applications of Ollivier’s Ricci curvature to large
scale real-world graphs [Ni+19] [Ni+15] [Ni+18] [WSJ17] [Sam+18].

Finally, we mention another recent arrival to the family of discrete cur-
vatures, which was introduced by R. Forman in 2003 [For03] and is based
on the theory of cell complexes. The properties of Forman curvature in
complex networks have later been explored by [Sau+18] [Sre+16].

2 Ollivier’s Ricci curvature on metric spaces
We lay out a notion of coarse curvature that is inspired by properties of par-
allel transport of spheres and balls on Riemannian manifolds. The coarse
Ricci curvature, sometimes called Ollivier-Ricci curvature in the literature,
uses for its definition larger scale properties of the space instead of the in-
finitesimal property of differentiation of functions near a point as in the case
of common notions of curvature on Riemannian manifolds. In particular,
the key insight of Ollivier [Oll09] is that curvature is related to transport
distance of balls on the manifold in the limit as the centers of the two balls
get arbitrarily close.

In the following, let (M, g) be a complete Riemannian manifold. Let
x ∈M and v, wx ∈ TxM and define y := expx v the endpoint of the geodesic
starting from x in the direction of the tangent vector v. The tangent vector
wy ∈ TyM is one which is obtained by transporting wx ∈ TxM along the
geodesic between x and y to TyM .

An observation about local behaviour of geodesics is that if the sectional
curvature K(v, wx) is positive and y is close to x, the two geodesics ema-
nating from x in the direction wx and from y in the direction wy will come
closer to each other in the neighbourhood of x and y. Similarly, if K(v, wx)
is negative then the two geodesics will drift apart locally.

Quantitatively, the sectional curvature K(v, w) can be characterized by
the following asymptotic relationship.

Lemma 1. [Oll09] Let x ∈ M and v, wx ∈ TxM unit tangent vectors. Let
δ, ε > 0, y := expx δv and wy ∈ TyM the unit tangent vector obtained by
parallel transport of wx from x along v to y. Then

d
(
expx εwx, expy εwy

)
= δ

(
1− ε2

2 K(v, w) +O
(
ε3 + ε2δ

))

as (δ, ε)→ 0.

The Ricci curvature Ric(v, v) is the average of the sectional curvature
K(v, w) over w on the unit circle in the tangent space TxM . One can then
show the following analogous result for the Ricci curvature.
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Lemma 2. [Oll09] Let Bε(x), Bε(y) be balls of radius ε in TxM and TyM
respectively. The average distance between points of Bε(x) and their parallel
transport images in Bε(y) is

δ

(
1− ε2

2(N + 2) Ric(v, v) +O
(
ε3 + ε2δ

))

as (δ, ε)→ 0.

The intuition to support this result is that on Riemannian manifolds with
positive curvature (that is, locally sphere-like surfaces), the transportation
distance of two balls with centers that are close to each other is on average
smaller than the distance of the centers.

In general metric spaces, there is no notion of either a tangent space or
parallel transport. Nonetheless, Lemma 2 motivates a definition of curvature
that does not rely on a smooth structure of the space. The balls Bε(x) and
Bε(y) can be substituted with probability measures mx,my with finite first
moments and optimal transport distance (Wasserstein distance) W1 can be
used in place of parallel transport. This suggests the following definition of
curvature for metric spaces.

Definition 3 (Ollivier’s Ricci curvature). [Oll09] Let (X.d,m) be a metric
space equipped with a Markov transition kernel m = (mx)x∈X . The coarse
curvature between two points x and y is defined as

κ(x, y) = 1− W1(mx,my)
d(x, y)

The following result from [Oll09] shows that this definition indeed coin-
cides on Riemannian manifolds with Ricci curvature in the limit as y → x
up to the factor ε2

2(N+2) when the manifold is equipped with a random walk
of step size ε.

Theorem 4. [Oll09] Suppose (M, g) is a complete Riemannian manifold.
For an arbitrary ε > 0, equip M with the transition kernel

mε
x(dy) = vol(dy)

vol(Bε(x))

Then
κ(x, y) = ε2

2(N + 2)(Ric(v, v) +O(ε) +O(d(x, y)))

Remark 5. Note that for ε and d(x, y) small, the latter two terms on the
right are superseded by Ric(v, v).
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The advantage of Ollivier’s curvature is that it is meaningful for strictly
discrete structures like graphs. The properties of Ollivier-Ricci curvature of
graphs have been studied in, for example, [OV12] [JL14] and [LLY11].

To illustrate a computation of Ollivier’s Ricci curvature on a graph,
consider the following example of the hypercube [Oll09].

Example 6 (Hypercube). Let X = {0, 1}d with the metric

d((x1, . . . , xd), (y1, . . . , yd)) =
d∑
i=1

1{xi 6=yi}

and suppose m is the transition kernel of a random walk that stays on
the same vertex with probability 1

2 and jumps to an adjacent vertex with
probability 1

2d . Consider two neighbouring vertices x = (x1, . . . , xd) and
y = (y1, . . . , yd). Since they are adjacent, they differ only in one coordinate,
i.e. xi 6= yi for some i.

The following is a transport plan from mx to my. The mass 1
2 −

1
2d is

transported from vertex x to the adjacent vertex y. The remaining mass of
1
2d on each of the d−1 remaining vertices adjacent to x are moved by vector
y − x to neighbours of y. This yields that

W1(mx,my) 6
(1

2 −
1
2d

)
+ d− 1

2d = 1− 1
d

and hence
κ(x, y) > 1

d
.

Ollivier’s Ricci curvature can be computed for smooth state spaces as
well. However, if the underlying process is time-continuous, discretization
of time is necessary to align with Definition 3.

Example 7 (Ornstein-Uhlenbeck process). This is Example 9 in [Oll09].
Let α > 0, s ∈ R and suppose the process (xt)t>0 satisfies

dxt = −αxtdt+ sdWt ∈ Rd

Choosing ∆t small, one can impose corresponding transition kernel on Rd:

mx(dz) = 1
(2πs2) d

2
exp

(
−|z − x(1− α∆t)|2

2s2

)
dz, x ∈ R

i.e. the normal distribution N((1 − e−α∆t)x, s2 Idd) on Rd. The variance
is constant and optimal transport distance of two Gaussians with the same
variance is simply the distance of the means. Hence, for any x, y ∈ R,

κ(x, y) = 1− |(1− e−α∆t)x− (1− e−α∆t)y|
|x− y|

= α∆t+O(∆t2)
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For curvature induced by continuous time processes as in Example 7,
the following definition using continuous time Markov kernels may be more
suitable, albeit more technical.

Definition 8 (Continuous time curvature). [Oll09] Let (X, d,m) be a metric
space equipped with a continuous time Markov process with transition kernel
m = (mt

x)x∈X,t>0. Define the curvature between two points x, y ∈ X as

κ(x, y) := − d

dt

W1(mt
x,m

t
y)

d(x, y)

∣∣∣∣∣
t=0

Properties of curvature defined by a continuous time Markov process
were further studied in [Vey12].

3 Existing major results

3.1 Basic tools

The following definition and lemma from [Oll09] allow extending local cur-
vature bounds of (X, d,m) to global bounds.

Definition 9 (ε-geodesic spaces). A metric space (X, d) is said to be ε-
geodesic for some ε > 0 if for all x, y ∈ X there exist n ∈ N and x =
x0, x1, . . . , xn = y such that d(xi, xi+1) 6 ε for all i = 0, . . . , n− 1 and

d(x, y) =
n−1∑
i=0

d(xi, xi+1)

Lemma 10 (Curvature in h-geodesic spaces). [Oll09] Suppose X is an ε-
geodesic space for some ε > 0. If for all x, y with d(x, y) 6 ε we have
κ(x, y) > κ ∈ R then κ is a lower curvature bound for any pair x, y ∈ X .

Remark 11. Typical examples of ε-geodesic spaces are Riemannian mani-
folds and weighted graphs.

Ollivier [Oll09] lays out the following two characterizations of curvature
bounded below by κ > 0.

Theorem 12 (Wasserstein distance contraction). A metric space with a
random walk (X, d,m) has a positive curvature bound κ > 0, i. e. κ(x, y) >
κ > 0 for all x, y ∈ X, if and only if for all µ, ν ∈ P1(X)

W1(µ ? m, ν ? m) 6 (1− κ)W1(µ, ν)

where µ ? m(dy) :=
∫
X mx(dy)µ(dx) and similarly for ν.

The following characterization can be proved by a simple argument in-
volving the Kantorovich-Rubinstein duality theorem.
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Theorem 13 (Lipschitz constant contraction). A metric space with a ran-
dom walk (X, d,m) has a positive curvature bound κ > 0 if and only if for
all k-Lipschitz functions f ∈ Lip(X) and arbitrary k ∈ R it holds that Mf
is k(1 − κ)-Lipschitz. In other words, X has a positive uniform curvature
bound if and only if M : Lip(X) → Lip(X) is a (1 − κ)-contraction in the
Lipschitz norm.

The following quantity controls the diameter for spaces of positive cur-
vature as proved by [Oll09].

Definition 14 (Jump). Let (X, d,m) be a metric space equipped with a
random walk. The one-step jump distance from a point x ∈ X is defined as

J(x) := W1(δx,mx) =
∫
X
d(x, y)mx(dy)

A number of results on diameter bounds are proven under various as-
sumptions. For example the following:

Theorem 15 (Myers theorem). [Oll09] Suppose (X, d,m) is a metric space
with a random walk such that κ(x, y) > κ > 0 for all x, y ∈ X. Then for all
x, y ∈ X,

d(x, y) 6 J(x) + J(y)
κ

from which it can be deduced that

diam(X) 6 2 supx∈X J(x)
κ

(1)

The preceding theorem is a metric space analogue of the classical Myers
theorem from Riemannian geometry, Theorem 33 in [Ber02]:

Theorem 16 (Myers theorem). Let (M, g) be a d-dimensional Riemannian
manifold. Suppose there exists κ > 0 such that for all x ∈M :

inf
v∈TxM,|v|61

Ric(v, v) > κ

Then

diamM 6 π

√
d− 1
κ

(2)

Remark 17. [Oll09] Note that the bound (1) loses a factor of 1√
κ
in com-

parison to the bound (2) when considering a Riemannian manifold. It is
nonetheless shown that the bound (1) is sharp in many examples. For ex-
ample, a hypercube X = {0, 1}d has diameter d, lower curvature bound
κ = 1

d and J(x) = 1 (see Example 6). Hence by Ollivier’s Bonnet-Myers
theorem we have diamX 6 N which is precise.
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3.2 Coarse Laplacian and Poincaré inequalities

Definition 18 (Averaging and Laplace operators). [Oll09] Let (X, d,m)
be a metric space equipped with a random walk and suppose an invariant
measure ν exists. Then ν defines the space L2(X, ν)/{const} (L2 space
modulo constants) with the norm

‖f‖2L2/{const} := Varν f

Define the averaging operator M : L2(X, ν)/{const} → L2(X, ν)/{const} as

Mf(x) :=
∫
X
f(y)mx(dy)

and the Laplacian operator ∆ : L2(X, ν)/{const} → L2(X, ν)/{const} as

∆f(x) := Mf(x)− f(x)

The characterization of positive curvature in Theorem ... shows that ∆
has spectral radius at most 1−κ as an operator on Lip(X), which is a dense
subset of L2(X, ν) for an invariant measure ν. If ν is reversible, the spectral
radius bound applies to ∆ acting on L2(X, ν)/{const} as well:

Theorem 19 (Spectral radius and gap). [Oll09] Let (X, d,m) be a metric
space with a random walk and curvature bounded below by κ > 0. Suppose
the invariant measure ν is reversible and the spread is finite, i. e. σ < ∞.
Then for all f ∈ L2(X, ν)/const,

VarνMf 6 (1− κ)2 Varν f

and hence the spectral radius of the operator M is at most 1− κ.

Remark 20. From the above, one can deduce that the spectral gap of −∆
is at least κ, since if λ is an eigenvalue then

(Id−M)f = λf

=⇒ (1− λ)f = Mf

=⇒ 1− λ 6 1− κ

The spectral gap is closely related to mixing properties of the random walk.

Remark 21. A related result in Riemannian geometry is the Lichnerowicz
theorem for the spectral gap of the Laplacian for manifolds with a positive
lower curvature bound, see Theorem 94 in [Ber02].

In a metric space setting, one may seek an interpretation of the gradient
∇f , or at least its magnitude, for f ∈ L2(X, ν). Two possible definitions
stem from the following corollary of the preceding theorem.
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Corollary 1 (Poincaré inequalities). [Oll09] Suppose (X, d,m) has curva-
ture bounded below by κ > 0. Then

Varν f 6
1

κ(2− κ)

∫
X

Varmx fν(dx) (3)

and
Varν f 6

1
2κ

∫
X×X

(f(y)− f(x))2ν(dx)mx(dy) (4)

This suggests that a reasonable definition for the magnitude of the gra-
dient of a function f ∈ L2(X, ν)/{const} could be

|∇f(x)|2 := Varmx f

or
|∇f(x)|2 := 1

2

∫
X

(f(y)− f(x))2mx(dy)

so that inequalities (3) and (4) were in alignment with classical Poincaré
inequalities for Sobolev spaces.

3.3 Concentration and a logarithmic Sobolev inequality

The following two quantities turn out to be important for quantifying con-
centration of measure, as shown in [Oll09]. These results are established
there with the tools of [Led01]. Again, in the following let (X, d,m) be a
metric space equipped with a Markov transition kernel m = (mx)x∈X .

Definition 22 (Spread and local dimension). Define the spread of the ran-
dom walk m at x ∈ X as

σ(x)2 := 1
2

∫
X×X

d(y, z)2mx(dy)mx(dz)

If there is an invariant distribution ν of the random walk, define the L2(ν)
average of the spread as

σ2 :=
∫
X
σ(x)2ν(dx) = ‖σ(·)‖L2(X,ν)

Further define
σ∞(x) := 1

2 diam suppmx

and
σ∞ := sup

x∈X
σ∞(x)

The local dimension at x ∈ X is defined as

nx := σ(x)2

sup{Varmx f : f ∈ Lip1(X)}
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Theorem 23 (Concentration of measure). [Oll09] Let (X, d,m) be a metric
space with a random walk converging to an invariant measure ν and suppose
there is a positive lower curvature bound κ > 0. If the function

x 7→ σ(x)2

nxκ

is C-Lipschitz then there exists tmax ∈ [0,+∞] and constants A,B > 0 such
that for all t 6 tmax

ν({x ∈ X : f(x) + Eνf}) 6 exp(− t2

A2 )

and for all t > tmax

ν({x ∈ X : f(x) + Eνf}) 6 exp
(
− t

2
max

A2 −
t− tmax

B

)
Remark 24. Ollivier [Oll09] gives an explicit form of the constants A,B
and the time tmax as

A2 = 6Eν
[
σ(x)2

nxκ

]
, B = max(2C, 3σ∞), tmax = A2

3B

Furthermore, it is justified in great detail by examples why the Lipschitz
assumption on σ(x)2

nxκ
is necessary to obtain Gaussian and exponential con-

centration.

To formulate a log-Sobolev inequality, Ollivier [Oll09] defines the follow-
ing non-local form of gradient for f ∈ L2(X, ν).

Definition 25 (λ-range gradient). For any f ∈ L2(X, ν)/{const} and λ > 0
define the λ-range gradient

Df(x) := sup
y,z∈X

|f(y)− f(z)|
d(y, z) exp(−λ(d(x, z) + d(x, y)))

For this definition of gradient, a Poincaré and a logarithmic Sobolev
inequalies are established in [Oll09]:

Theorem 26 (Poincaré and log-Sobolev inequalities). Let (X, d,m) be a
metric space with a random walk and a positive lower bound on curvature
κ > 0. Then for λ > 0 sufficiently small there exists C > 0 such that

Varν f 6 C

∫
X

(Df)2dν

and ∫
X
f log fdν 6 C

∫
X

(Df)2

f
dν

Remark 27. Ollivier gives the specific value of the constant C = 4 supx∈X
σ(x)2

κnx
,

but also shows by example that this constant is not sharp.
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3.4 The Gromov-Hausdorff topology

Ollivier [Oll09] suggests the following notion of convergence of metric spaces
equipped with a random walk based on the Gromov-Hausdorff topology.

Definition 28. Let {(Xi, di,m
i)}i∈N and (X, d,m) be compact metric spaces

with random walks. We say that

(Xi, di,m
i)→ (X, d,m)

in the modified Gromov-Hausdorff topology if for all ε > 0 there is N ∈ N s.
t. for every i > N there are isometric embeddings fi : Xi →M,f : X →M
to a metric space (M,dM ) such that

dH(fi(Xi), f(X)) < ε

and moreover, for all x ∈ Xi there is y ∈ X such that

dM (fi(xi), f(x)) < ε and W1(fi ◦mi
x, f ◦my) < ε

Here,
dH(A,B) := max{sup

y∈B
inf
x∈A

d(x, y), sup
x∈A

inf
y∈B

d(x, y)}

is the Hausdorff distance of two subsets A,B of a compact metric space
(X, d), and fi ◦mi

x, f ◦mx are the pushforward measures from X to M by
fi and f respectively.

This definition leads to the following pointwise continuity result, which
in particular implies that lower curvature bound of the form > κ is a "closed"
property.

Theorem 29. [Oll09] Suppose that (Xi, di,m
i) −−−→

i→∞
(X, d,m) in the sense

of Definition 28 and let x, y ∈ X be arbitrary. If (xi), (yi) are sequences such
that xi → x and yi → y as i→∞ then

κi(xi, yi)→ κ(x, y)

where κi is Ollivier-Ricci curvature in the space Xi.

Corollary 2. [Oll09] If there exists κ ∈ R such that for all i > 1 and all
x, y ∈ Xi

κi(xi, yi) > κ

then
κ(x, y) > κ
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4 Future directions
We propose some problems for further study, divided into four categories.
Some of these questions may have already been addressed in the literature,
in which case they contain a reference. Moreover, there is a number of
important problems formulated by Ollivier in [Oll10a].

4.1 Extending results

Problem 1 (Multi-step curvature). Some aspects of this problem have been
studied in [Pau16]. Recall Ollivier defines curvature of a metric space with
a random walk as

κ(x, y) = 1− W1(mx,my)
d(x, y)

Let m(k)
x := m? . . . ?m? δx be the k-step transition probabilities. What can

we say about the multi-step curvature

κ(k)(x, y) := 1− W1(m(k)
x ,m

(k)
y )

d(x, y)

and does there exist a limit? Clearly, by the Lipschitz contraction property,
it goes to 1 if the lower bound κ > 0, but what happens in other regimes
perhaps with some control on the amount of negative curvature? Consider
the following settings:

• graphs (finite and infinite)

• spaces with lower bound (not necessarily positive) on curvature and
some form of potential control as discussed in the previous section

What is the relationship between the evolution of curvature κ(k) as k
increases and the evolution of the curvature along the discrete Ricci flow
(see Problem 7)? Does one control the other?

Problem 2 (Curvature of SDEs driven by fBM). Consider curvature of
Euclidean spaces with respect to differential equations driven by fractional
Brownian motion. Suppose that (Xt)t>0 is a solution to

dXt = b(Xt)dt+ σ(Xt)dBH
t

X0 = x

where BH is a fractional Brownian motion with Hurst parameter H ∈ (0, 1].
Letm∆t

x be the law of X∆t for some ∆t > 0 small. What is the Ollivier-Ricci
curvature induced on Rd by the transition kernel (m∆t

x )x∈Rd?
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Problem 3 (Curvature, mixing times and concentration). Does Ollivier’s
Ricci curvature control mixing times of the random walk and vice versa?
This is related to the spectral gap. In general, what is the relationship
between curvature, mixing times and concentration of measure? It is known
that spectral gap gives a control on mixing times. This problem was studied
by Paulin in [Pau16].

Problem 4 (Global properties). Can we infer global geometric or topologi-
cal properties from Ollivier’s Ricci curvature? One example of such a result
is Ollivier’s Bonnet-Myers theorem [Oll09]: if the curvature of (X, d,m) is
bounded below by some κ > 0 in the sense of Ollivier, the diameter of the
space is bounded (see Theorem 15 in Section 3.1). An open problem appears
to be a Bishop-Gromov comparison inequality for metric spaces (Problem
L in [Oll10a]). While in the Bishop-Gromov theorem one compares with
a Riemannian manifold of constant Ricci curvature, Ollivier [Oll10a] sug-
gests that hypercubes {0, 1}d could serve as comparison spaces of constant
positive curvature.

Problem 5 (Sharpness of estimates). Many estimates from the founda-
tional work [Oll09] are metric space analogues of known results for Rieman-
nian manifolds. A typical example of this is the Bonnet-Myers theorem as
described in Remark 17. While for many discrete examples the estimate is
sharp, there is a loss of a factor for Riemannian manifolds. Another exam-
ple is the logarithmic Sobolev inequality of Theorem 26 which is shown in
[Oll09] not to be a sharp estimate. Is it possible to sharpen the estimate, or
find a condition for sharpness?

Problem 6 (Coarse sectional curvature). In [Oll09], Ollivier defines the
negative part of the curvature between x, y ∈ X as

κ−(x, y) := 1
d(x, y)

∫
X×X

[(d(z1, z2)− d(x, y)) ∨ 0] ξ(dz1, dz2)

for an optimal coupling ξ of mx,my, and further the instability between
x, y ∈ X as

U(x, y) := κ−(x, y)
κ(x, y)

This quantity was of importance in establishing the logarithmic Sobolev
inequality in Theorem 26, and moreover the condition U(x, y) > 0 was sug-
gested in [Oll09] as a surrogate for non-negative sectional curvature in met-
ric spaces. The condition U(x, y) > 0 encapsulates the situation where the
random walk reduces transport distance between masses at any two points
x1 ∈ suppmx and y1 ∈ suppmy. This problem is mentioned in [Oll10a] as
Problem P and it is suggested to compare this notion with Alexandrov’s
sectional curvature.
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4.2 Discrete Ricci flow

Problem 7 (Discrete Ricci flow). This is Problem N formulated in [Oll10a].
The Ricci flow on (X, d,m) can be defined as

d

dt
dt(x, y) = −κt(x, y)dt(x, y)

This dynamics deforms the metric of the underlying space and thus also
changes the curvature. Does there exist a Gromov-Hausdorff limit (or even
a limit in the sense of Definition 28) and a rate of convergence? As a simpler
version of this problem, one can also study the time-discretization [Ni+18]
[Ni+15]

Initialize: d0(x, y) := d(x, y), κ0(x, y) := 1− W1(mx,my)
d0(x, y)

For i > 0 do:
d(i+1)∆t(x, y) := di∆t(x, y)(1− κi∆t(x, y)∆t)

κ(i+1)∆t(x, y) := 1− W1(mx,my)
d(i+1)∆t(x, y)

Problem 8 (Spectrum of the Laplacian). Define the Laplacian [Oll09] on
(X, d,m) as M − Id : L2(ν) → L2(ν) where ν is an invariant measure
(assuming it exists) and

M : L2(ν)→ L2(ν),Mf(x) :=
∫
X
f(y)mx(dy)

What happens to the spectrum of the Laplacian along the evolution of dis-
crete Ricci flow? Again, this is more amenable to study on graphs and later
on general spaces.

4.3 Curvature on graphs

Problem 9 (Random graph models). What is the (average) curvature of
standard generative graph models (Erdös-Rényi, Barabási-Albert, Watts-
Strogatz)? For example, consider the Erdös-Rénui model G(n, p). This
model is a graph with n vertices and an edge between any two vertices
exists with probability p. What can be said about Ollivier-Ricci curvature
in terms of n and p? What is the probability of obtaining a graph with
curvature at least some κ ∈ R?

The works [JL14][LLY11][LY10] address Ollivier’s curvature problems in
the setting of locally finite graphs and may thus offer tools to follow through
with this and other problems on graphs. Moreover, Ni et al. [Ni+15] offers
an empirical study of Ollivier’s curvature on these models, which shows that
these models exhibit mostly negative curvature. New results for negative
curvature or loosening conditions on strictly positive curvature in known
results would help understanding curvature in these models [Oll10a].
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Problem 10 (The idleness and decay parameters). Some aspects of this
problem have been studied in [LLY11]. In the context of graphs, how does
the metric space change (e.g. in the Gromov-Hausdorff topology) with re-
spect to α for the family of transition kernels

mα
x (xi) =


α if xi = x
(1− α)/Deg(x) if xi ∼ x
0 otherwise

The parameter α is called the idleness of the random walk.
Ni et al. [Ni+19] propose to study the curvature of two-parameter ran-

dom walk

mα,p
x (xi) =


α if xi = x
1−α
C · exp (−d (x, xi)p) if xi ∼ x

0 otherwise

What can be said about the dependency of the curvature on α and p for the
space (X, d,mα,p)?

4.4 Relation to other notions of curvature

Problem 11 (Relation to other notions of curvature). Suppose (X, d,m)
is a length space equipped with a random walk and suppose an invariant
measure ν exists. The space can then be interpreted as a measured length
space (X, d, ν) and analyzed using Lott-Sturm-Villani theory [LV09] [RS05].
More recently, Ambrosio, Gigli and Savaré introduced the Riemannian Ricci
curvature-dimension condition RCD(K,∞) [AGS14] which has attracted
much attention.

Under what conditions does the space (X, d,m) with a positive lower cur-
vature bound satisfy curvature-dimension condition CD(K,∞) from [LV09]
or even the RCD(K,∞) condition from [AGS14]? Knowing under which
assumptions would allow us to connect the Ollivier-Ricci curvature with the
large body of research that has been done on the curvature of measured
length spaces.

Besides, there are also older notions of curvature that could be investi-
gated with respect to Ollivier’s Ricci or sectional curvatures, such as Alexan-
drov sectional curvature and, for graphs, Ricci curvature introduced by F.
Chung and S. T. Yau in [CY96].
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