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Source code used to compute the tasks can be accessed from the reposi-
tory https://github.com/benediktpetko/RPML-MATH97229.

1 Setting
We solve the stochastic differential equation{

dYt = (1− Yt) dt + 2Y 2
t ◦ dWt

Y0 = 0
(1)

numerically using the Milstein scheme [1] in time horizon [0, T ].
For time-step ∆t := T

K define ti = i∆ for i = 0, . . . , K and the approxi-
mated solution according to the Milstein scheme modified for Stratonovich
integration:

Ŷ (ti+1) := Ŷ (ti) + (1− Ŷ (ti))∆t + 2Ŷ (i)2Ni∆t + 2Ŷ (i)2(Ni∆t)2

where {Ni : i = 0, . . . , K} are independent standard normal random vari-
ables.

Concretely, we choose time horizon T = 0.25, K = 250 number of steps
and N = 1600 number of replications. See Figures 1and 2 for sample paths
and empirical distribution at terminal time.

2 Comparison: increment features and signature
Here, we implement and compare linear regression of the target variable
YT with respect to two distinct sets of features based on the driving signal
Xt := (t, Wt), or more precisely its increments(

X(i+1)T/K −XiT/K

)K−1

i=0
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Figure 1: 5 sample paths of the simulated solution to Eq. 1 up to T = 0.25
with step size 0.001

Figure 2: Empirical density of Y0.25 based on 1600 replications with step
size 0.001
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Sampling N = 1600 replications, we obtain sample paths of the driving
signal, (

X
(j)
(i+1)T/K −X

(j)
(iT/K)

)k

i=0
for j = 1, . . . , 1600

Splitting these 1600 sample paths into the training set of paths indexed
by j = 1, . . . , 800 and test set of paths indexed by j = 801, ldots, 1600, we
can use the former to fit a linear regression model and the latter to measure
out-of-sample goodness of fit criteria. The linear regression can be applied
with the following two distinct kinds of features.

• Consider the increments of the driving signal themselves as features
in the linear regression problem

Ŷ inc
T = a0 +

K−1∑
i=1

2∑
j=1

ai,j

(
Xj

(i+1)T/K −Xj
iT/K

)

• Consider the signature of Xt up to level n as features to obtain the
formulation

Ŷ sig
T = L0 +

n∑
j=1

2∑
i1...ij=1

S(X)j;i1...ij

0,T Lj;i1...ij

In the numerical experiment, the signature components S(X)j:i1...ij

0,T

were computed by the iisignature package [2] for Python. Note that
linear regression over signature features up to level n of the two-
dimensional signal Xt entails fitting 2n+1 − 2 parameters.

Table 1 below summarizes the performance of four sets of features, com-
pared with respect to their mean squared error and R2 scores, both measured
on the test set.

Features Mean squared error (MSE) R2 score
Increments 2.048× 10−5 0.96

Signature (level 2) 2.711× 10−5 0.95
Signature (level 4) 1.747× 10−7 0.9997
Signature (level 6) 1.803× 10−9 0.999996

Table 1: Comparison of results for 4 sets of features for fixed K = 250, T =
0.25 and N = 1600 replications.
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Figure 3: 5 sample paths of the simulated solution to Eq. 1 up to T = 1
with step size 0.001.

A remark on long time horizons
In our experiments, the Milstein scheme becomes unstable for time horizons
T larger than 0.5. We propose to remedy this problem by discarding paths
with mean higher than some cut-off value.

In the following, we chose terminal time T = 1 with K = 1000 time
steps, N = 20000 replications and cut-off mean of 0.3. In our numerical
experiment, this lead to keeping only N ′ = 1738 paths without singular
behaviour and discarding the rest. See Figures 3 and 4 for observed sample
paths and empirical distribution at terminal time, and Table 2 for a com-
parison of four feature sets in terms of the MSE and R2 score they yield on
the test set.

Features Mean squared error (MSE) R2 score
Increments 0.02112 -0.86

Signature (level 2) 0.003331 0.73
Signature (level 4) 0.0001467 0.986
Signature (level 6) 9.146× 10−5 0.993

Table 2: Comparison of results for 4 sets of features for fixed K = 1000, T =
1 and N = 1738 non-singular replications obtained by discarding paths with
mean higher than 0.3.
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Figure 4: Empirical density of Y1 based on 1738 replications with step size
0.001
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